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Abstract

Recent developments in the physical model of 1 MeV to 100 TeV hadron and lepton interactions with
nuclei and atoms are described. These include a new nuclear cross section library, a model for soft pion
production, the cascade-exciton model, the dual parton model, deuteron-nucleus and neutrino-nucleus
interaction models, detailed description of µ−, π− and p absorption and a unified treatment of muon
and charged hadron electromagnetic interactions with matter. New algorithms are implemented into the
MARS13(98) Monte Carlo code and benchmarked against experimental data. The code capabilities to
simulate cascades and generate a variety of results in complex media have been also enhanced.

1 Introduction

The MARS Monte Carlo code system, being developed over 24 years, allows fast and reliable inclusive sim-
ulation of three-dimensional hadronic and electromagnetic cascades in shielding, accelerator and detector
components in the energy range from a fraction of an electron-volt up to about 100 TeV [1]. The reliable per-
formance of the MARS13 code [2, 3] has been demonstrated in numerous applications at Fermilab, CERN,
KEK and other centers as well as in special benchmarking studies [4, 5, 6]. Recently, challenging applica-
tions at Fermilab have induced further significant developments of the code’s physical model and its scoring
capabilities. New developments in both the electromagnetic and strong interaction sectors as well as other
enhancements to the current version – MARS13(98) [1] – are briefly described in this paper.

2 Nuclear Cross Sections

Hadron-nucleon cross sections. New compilations and parameterizations of elastic and inelastic σhN

are implemented covering a hadron kinetic energy range 1 MeV<E<100 TeV. Total cross sections, σtot, from
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1 MeV to 10 GeV for p, n, π+ and π− are as predicted by the new improved algorithm [7] of the Cascade-
Exciton Model (CEM) [8] code CEM95 [9] while for K+, K− and p data compilations are used [10]. Parame-
terizations from [10] are relied upon for all particles between 10 GeV and 100 TeV. Elastic cross sections, σel ,
from 10 MeV to 10 GeV for p, n, π+ and π− are likewise from [7] with interpolationof data [10] for K+, K−

and p. Parameterizations from [11] are used between 10 and 200 GeV. For energies 200 GeV<E<100 TeV,
the optical theorem with ‘universal slope’ [12] is applied. Fig. 1(a) shows comparison of data and MARS

results on σtot and σel for π−p collisions.
Hadron-nucleus cross sections. New compilations, parameterizations and integration algorithms for

total, inelastic, production and elastic σhA are introduced into the code. Total, inelastic and elastic cross
sections from 1 MeV to 5 GeV are described using new compilations and improved interpolation algo-
rithms [13, 14]. At higher energies (5 GeV<E<100 TeV), σtot, σin, σprod and σel are calculated in the frame-
work of the Glauber multiple scattering theory with the above σhN as an input. The nucleon density distribu-
tion in nuclei is represented as the symmetrized Fermi function with the parameters of [15] for medium and
heavy nuclei (Z > 10) and the ones of [16] for Z < 10. An example is shown in Fig. 1(b) for neutron-nucleus
σtot as calculated with this algorithm (solid line) and with the improved algorithm [14] (dashed line).

Photon-nucleus cross sections. Data compilation and interpolation algorithm for σγN with phenomeno-
logical A-dependence for σγA are as described in [17].

3 Nuclear Reactions from 10 MeV to 100 TeV

Improved description of hadron-nucleus elastic scattering. Two algorithms are implemented into
MARS to better describe hadron-nucleus elastic scattering for 10 MeV<E<5 GeV: one from the code
LAHET [18] while the other is based on a phenomenological formula [19]. As one can see from Fig. 2(a),
more work is still needed here. However, at higher energies, the model used in MARS for both coherent and
incoherent components of dσ/dt is quite consistent with experiment.
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Figure 1: MARS cross sections in comparison with experimental data: (a) σtot and σel for π−p collisions as
a function of pion kinetic energy; (b) σtot for neutrons vs beam momentum.
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Figure 2: (a) Angular distribution of 14 MeV neutrons in center-of-mass, scattered off carbon as calculated
according to LAHET [18] and [19]; (b) Pion spectra for pp → π−X at four angles for proton momentum of
p0=24 GeV/c, data from [21].

New model for π-production from 5 GeV to 100 TeV. A new phenomenological model has been de-
veloped and introduced into MARS as the default to describe pion production in high-energy proton-nucleus
interactions [20]. Special attention is paid to low-momentum pions (p<2 GeV/c) from intermediate incident
proton momenta (5< p0 <30 GeV/c). The following form is used for the double differential cross section
of the pA → π±X reaction:

d2σpA→π±X

dpdΩ
= RpA→π±X(A, p0, p, p⊥)

d2σpp→π±X

dpdΩ
, (1)

where p and p⊥ are total and transverse momenta of π±, and A is the atomic mass of the target nucleus. The
function RpA→π±X , measurable with much higher precision than the absolute yields, is almost independent
of p⊥ and its dependence on p0 and p is much weaker than for the differential cross-section itself. Rather so-
phisticated algorithms have been developed to treat this function for pion production on nuclei in the forward
(xF >0) and backward (xF <0) hemispheres separately. It is demonstrated in [20] that model predictions
are in a good agreement with data in the entire kinematic region. Typical examples of comparison with data
are shown in Figs. 2(b) and 3. Calculations with the MARS13(98) code of the pion double differential spectra
from a thick lead target at p0=8 GeV/c agree reasonably well with data [22] in the difficult momentum region
0.5< p <5 GeV/c (see Fig. 3(b)) whereas GEANT seems to have a problem.

Cascade-exciton model code CEM95. A version of the Cascade-Exciton Model of nuclear reactions [8]
as realized in the code CEM95 [9] and containing also several recent refinements [7] is now implemented as
default for 1-10 MeV < E < 3-5 GeV. The 1994 International Code Comparison for Intermediate Energy
Nuclear Data has shown that CEM95 adequately describes nuclear reactions at intermediate energies and
has one of the best predictive powers for double differential cross sections of secondary particles as com-
pared to other available models. Besides that, it adds to MARS reliable π−-capture description (with a few
modifications, e.g., radiative capture π−p → nγ), better description of photon induced reactions in the inter-
mediate energy range and of radionuclide production. To be usable in MARS, the CEM95 code is converted
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Figure 3: MARS pion spectra vs data: (a) pCu → π−X (θ ≈ 0), the two curves correspond to highest and
lowest proton momentum indicated (see [20] for references); (b) π− (top) and π+ (bottom) spectra from a
10-cm thick lead target at p0=8 GeV compared with data [22] and GEANT (FLUKA mode) [23] prediction.

into double precision along with some other necessary modifications. Several examples of the CEM predic-
tions compared with experimental data and results of several other models are given in Figs. 4 and 5. One
can see that on the whole, the code reproduces quite well not only spectra of secondary nucleons but also
excitation functions for the spallation yields, a much more difficult characteristic of nuclear reactions to be
predicted by any theory, and is consistent with other well-known models [26].

DPMJET for primary interactions. The DPMJET-2.3/2.4 code [27] is implemented into MARS to sam-
ple the initial hN , hA, AA and νA interaction for 5 GeV<E<100 TeV. This provides—at least partially—
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Figure 4: Double differential nucleon spectra as calculated with CEM95: (a) π+Fe → n + X for 1.5 GeV
pions compared to data [24]; (b) γC → p + X for 198 MeV photons compared to data [25].
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Figure 5: Excitation functions for the production of various radionuclides in p+56 Fe spallation reactions vs
proton kinetic energy calculated with CEM95 and compared with available experimental data and predictions
of several other models. For details and references see [26].

features of a full exclusive event generation with all known particles in a final state. The DPMJET code has
been proven to be consistent with collider and cosmic ray data in a multi-TeV energy region. The two-
component Dual Parton Model is used with multiple soft chains and multiple minijets at each elementary
interaction. Within this model the high energy projectile undergoes a multiple scattering process as for-
mulated in the Glauber approach. Particle production is realized by the fragmentation of colorless parton-
parton chains constructed from the quark content of the interacting hadrons. The code includes cascading
of secondaries—suppressed by the formation time concept—within both target and projectile nucleus. The
excitation energies of the remaining target– and projectile nuclei are calculated and simulation of subsequent
nuclear evaporation is included in the model. The coupling of these new features to the MARS code is very
CPU-time consuming and is used optionally only.

Deuteron-nucleus collisions. Deuteron interactions have little in common with the general picture of the
interaction between complex nuclei because of the deuteron’s relatively large size and small binding energy.
Therefore a special model has been developed [28] and implemented into MARS. Deuteron-nucleus interac-
tions are classified as elastic, dissociation, stripping, and full inelastic. In elastic interactions the deuteron
emerges intact in the final state while the nucleus may be unchanged (coherent elastic) or have lost one nu-
cleon (incoherent). Coherent elastic uses Glauber’s treatment with some adjustments of the parameters to fit
experiment. Incoherent elastic scattering assumes a differential cross section to be twice that of the proton—
using the prescription of [29]—and the nuclear parameters as for the coherent case. This is then multiplied
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Figure 6: (a) π, K-meson yield from a gallium target for proton and deuteron beams calculated by MARS;
(b) Dose equivalent in a bare (Neq) tissue phantom and in one embedded into an infinite medium (Eq) per
unit neutrino fluence as calculated with MARS and estimated in [34].

by a deuteron– and a nucleon form factor as well as a Pauli suppression factor which hinders low momentum
transfers. Exchange of a long range virtual photon may result in Coulomb dissociation whereby the deuteron
splits into a proton and neutron. This is calculated using a Weiszacker-Williams approach for virtual pho-
ton emission. Dissociation may also result from (nuclear) elastic processes at relatively high momentum
transfers. In stripping one nucleon undergoes an inelastic nuclear event while its partner continues without
interaction. The total stripping probability is calculated based on the projected n–p separation as predicted
by the deuteron wave function [30] and geometrical arguments. Deuterons dissociate as in [31] with full rel-
ativistic kinematics. Interaction with the nucleus by one of the partners proceeds within the standard MARS

scheme. In full inelastic events both nucleons interact with the nucleus. The stripping routine provides the
angular deflection and momentum of each nucleon after which both are allowed to interact as other MARS

nucleons. As an example, a calculated π, K-meson yield out of a 3-cm radius gallium target 36-cm long in a
7.5-cm radius solenoid (B=20 T) is presented in Fig. 6(a) for proton and deuteron beams of equal momentum
per nucleon.

Neutrino-nucleus interactions. Neutrinos from a high energy muon collider may cause a radiation prob-
lem at large distances from the source [32, 33]. Extraterrestrial neutrinos have also been examined as radi-
ation hazards [34]. A special weighted neutrino interaction generator has been developed and incorporated
into MARS. This model represents energy and angle of the particles—e±, µ±, and hadrons—emanating from
a simulated interaction. These particles, and the showers initiated by them, are then further processed by
the MARS transport algorithms in the usual way. The four types of neutrinos are distinguished throughout:
νµ, νµ, νe, νe. The model identifies the following types of neutrino interactions for νµ (νµ) and similarly for
νe, (νe): νµN → µ+X, νµN → νµX, νµp → µ+n, νµp → νµp, νµn → νµn, νµe− → νµe−, νµe− →

νeµ
−, νµA → νµA. The formulas for these processes as well as results of Monte Carlo simulations in gen-

eral and in application to muon colliders in particular are described in [35]. Fig. 6(b) shows calculated dose
in a 30-cm slab tissue-equivalent phantom irradiated with neutrinos of 100 MeV< Eν <10 TeV energy.
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4 Stopped Hadrons and Muons

A very careful treatment is done in MARS of processes near and below the Coulomb barrier in hadron and
muon transport (ionization absorption vs nuclear interaction vs decay).

Pions. A stopping π+ decays into µ+ of 4.1 MeV plus a neutrino while a π− attaches to a nucleus (via
the modified Fermi-Teller law). While cascading down the atomic energy levels, the pion is captured from a
high orbit thus emitting only a few low energy photons which are neglected here. The hadronic interaction
of the stopped π− is treated using the Cascade-Exciton Model [9] with a few modifications. When hydrogen
is the target it is assumed there is a 60% probability to for charge exchange (π−p → π0n) whereupon the
π0 decays into two photons of 68.9 MeV each and the neutron acquires a small (0.4 MeV) kinetic energy.
The remaining 40% of stopped π− in hydrogen interact via radiative capture: π−p → nγ. Here the photon
acquires 129.4 MeV and the neutron 8.9 MeV kinetic energy. Other nuclides have a much smaller probability
for radiative capture (1–2% which is taken into account in competition with CEM95). The photon energy is
chosen from an empirical fit to experiment while the remainder is deposited as excitation energy.

Muons. A stopping µ+ always decays into eνν while a µ− attaches itself to a nucleus. When a µ−

stops in a compound or mixture one first decides to which nucleus the µ− attaches (modified Fermi-Teller
law). Following attachment the muon may still decay as decided by comparing capture and decay lifetimes of
which the latter is favored for light nuclei (Z≤11). A captured µ− then cascades down to the ground state of
the muonic atom emitting photons along with some Auger electrons, all of which is simulated using approx-
imate fits to the atomic energy levels. In hydrogen muon capture always produces a 5.1 MeV neutron via in-
verse β-decay. In complex nuclei the giant dipole resonance plays a role and results in an ‘evaporation’-type
neutron spectrum with one or more resonances superimposed. This is illustrated in Fig. 7(a) which shows
the neutron spectrum resulting from µ− capture on oxygen. In addition smaller numbers of evaporation-type
charged particles and photons may be emitted. Calculated with the above algorithms longitudinaldose distri-
butions in a slab tissue-equivalent phantom are shown in Fig. 7(b) at the axis of 150 MeV proton and 75 MeV
pion, muon and neutron beams striking the phantom.
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Figure 7: (a) Neutron spectrum generated in a µ− capture on oxygen atom; (b) Axial absorbed dose in a
tissue-equivalent phantom for a 150 MeV (p) and 75 MeV (π±, µ±, n) 1×1 cm beams.
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Antiprotons. Stopped p attach to nuclei in the same way as π− or µ−. Annihilation at rest is assumed
to produce only pions, neglecting some of the rarer modes involving strange particles. Charges of produced
pions are slightly skewed towards π− in view of the ‘brought in’ negative charge. Pion momenta are chosen
from an inclusive distribution loosely based on experiment. The energy weighted distribution is normalized
to twice the nucleon mass which predicts a multiplicityof 4.3—close to observation. In a complex nucleus the
annihilation is treated as though it occurs on free nucleon except that each pion produced by the annihilation
process is given a 50% probability to interact within the nucleus. This shortcut attempts to include—at least
qualitatively—participation by the constituents nucleons.

For antiprotons in flight the annihilation cross section results in a larger cross section for pA vis-a-vis pA,
especially for light nuclei at lower energies. Total cross sections for both pA and pA are estimated on the basis
of simple geometrical considerations and pp, pn and pp,pn cross sections. The ratio σpA/σpA is then applied
to the more accurate σpA used in MARS. Annihilation in flight uses the same inclusive pion distribution as at
rest in the p-nucleon rest frame after which the pions are Lorentz transformed back to the lab. Above about
0.1 GeV/c a small pp → nn component is included. For both mechanisms nuclear target effects are again
approximated by allowing emerging particles to interact in the same nucleus or escape each with one half
probability. There is also added a third component in which the p or n interact only quasi-elastically with the
nucleons. These are simulated using conventional MARS algorithms exactly as for protons except that the
fastest nucleon emerging (leading particle) from the collision is identified as its antiparticle.

5 Electromagnetic Processes.

Unified treatment for hadrons and muons. In muon and charged hadron electromagnetic processes,
i.e., ionization and radiative collisions, with energy transfer ε greater than a cutoff εc are considered as dis-
crete events involving production of δ-electrons, e+e−-pairs, and bremsstrahlung [17]. The secondaries with
E > εc are followed explicitly. Energy losses with ε < εc (so-called restricted losses) are considered as con-
tinuous. The restricted loss distribution is described by Vavilov’s function with redefined parameters

ξ = Bs, B = 0.1536
Z

Aβ2

κn = ξ/εc, β2
n = β2εc/εmax (2)

where Z and A are the atomic and mass numbers of the absorber, βc is the particle velocity, εmax is the
maximum energy transferred in a single collision, where the constant B has dimensions MeV · g−1 · cm2

so that, with the path-length s expressed in g/cm2, ξ is in MeV. However, when κn > 10, the distribution
becomes approximately Gaussian with mean

∆̄r = α(ε < εc) · s (3)

and variance

σ2
r =

ξ2

κn

(1 −
β2

n

2
) (4)

where α(ε < εc) is the mean restricted energy loss per unit length. The Gaussian approximation drastically
simplifies the simulation. To simulate δ-electron production at any step, one calculates εδ = min(εG, εc)
where εG = ξ/10. The restricted energy loss with E < εδ is then sampled from a Gaussian. The number of
δ-electrons with E > εδ is simulated using a Poisson distribution. The energy of each δ-electron—if any—
is sampled from Bhabha’s formula. Total energy loss of a particle is the sum of the δ-electron energies and
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Figure 8: (a) Muon energy spectrum after a 50-cm lithium absorber for 100 MeV incident muons as calcu-
lated with MARS, GEANT [23] (in two modes) and ICOOL [36]; (b) Muon angular distribution after a 150-cm
lithium absorber for 300 MeV incident muons as calculated with MARS, GEANT and ICOOL in a few modes.

the restricted energy loss. Calculated energy spectrum and angular distributions of 100 and 300 MeV muons
after lithium absorbers are shown in Fig. 8 in comparison with other calculations.

Bremsstrahlung. For muon bremsstrahlung, a precise but complex formalism [37] used previously as
described in [17] has been replaced with a new simplified algorithm [38], which practically coincides with
the exact formula. Total cross section and dE/dx calculated by the two methods agree within 1%.

6 Other Enhancements

Precise treatment of mixtures and compounds. Precise treatment of individual elements in mixtures
and compounds defined through the weight– or atomic fractions is done for all the electromagnetic and nu-
clear elastic and inelastic processes. Homogenization (averaging) thus becomes obsolete and is to be strongly
discouraged. Atomic masses for 100 elements of the periodic table [10] and mean ionization energies and
Sternheimer parameters [39, 40] are used by the code. All needed nuclear and electromagnetic cross sections
and other parameters are calculated at the initialization stage for the specified composition of all materials
present in the problem with a sample printout provided. Corresponding array sizes are adjusted according to
energy. Up to 50 composite materials may be present in a given run.

Automatic MARS-MCNP interface. The code now includes an automatic interface of MARS materials
to the MCNP code [41] for transport of low-energy neutrons and photons.

List of particles. MARS now includesp, n, π+, π−, K+, K−, µ+, µ−, γ, e−, e+, p, π0, d, t, He3, He4, ν.
In this version—for transport and output—n are included along with the neutrons, heavy fragments de-
posit their energy locally and short-lived hadrons and resonances are assumed to decay instantly into the
appropriate particles which are then followed by the standard MARS algorithms.
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Figure 9: (a) Dose equivalent due to neutrons (E>20 MeV) in a thick concrete absorber irradiated with 100
and 400 MeV neutron beams as calculated with HETC, ANISN, NMTC, MARS and MCNP codes; (b) Absorbed
dose per unit neutron fluence at 1-cm depth of a slab tissue-equivalent phantom vs neutron energy calculated
with the MARS, HETC-3STEP and FLUKA codes.

Geometry, visualization and histograming. The Object-Oriented geometry engine and visualization
module [3, 42] is further developed. Histograming and visualization capabilities of results, including a
geometry-independent mesh-based scoring tool, are further extended. An interface to the ANSYS code [43]
for thermal and stress analyses [3] for use in certain applications is slightly improved.

Variance reduction. Algorithms for splitting and Russian roulette at hA vertices and in particle trans-
port are further improved. For ‘deep penetration’ problems in complex highly non-uniform geometries, al-
gorithms for scoring probabilities rather than real particle crossings or interactions now take into account all
possible processes for both stable and unstable particles and charged as well as neutral hadrons.

Recent benchmarking Fig. 9(a) shows results of a recent SATIF-4 benchmarking for attenuation of
dose equivalent (E>20 MeV neutrons only) in a thick concrete absorber for parallel almost mono-energetic
neutron beams [44] of 100 and 400 MeV. Results calculated with HETC, ANISN, NMTC, MCNP, and MARS

agree quite well over six decades at 400 MeV. At 100 MeV wider discrepancies are observed. Another
SATIF-4 benchmarking has been performed for a 30-cm thick tissue-equivalent phantom irradiated with par-
allel mono-energetic neutron beams of 0.1 to 10 GeV energy [45]. Fig. 9b shows MARS results rather close
to those of HETC-3STEP.

7 Conclusions

The MARS code physics and scoring possibilities have been substantially extended. The code’s reliability is
confirmed by several contributions to the SATIF/SARE meetings as well as in several more recent applica-
tions where MARS predictions show very good agreement with data. The official MARS site on the World
Wide Web is http://www-ap.fnal.gov/MARS/ which contains information about the code, its users, and its
uses. At this site one can also register as a user and download the code for various platforms.
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